首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   3篇
  国内免费   4篇
安全科学   5篇
废物处理   8篇
环保管理   32篇
综合类   20篇
基础理论   48篇
环境理论   1篇
污染及防治   80篇
评价与监测   35篇
社会与环境   24篇
  2023年   12篇
  2022年   18篇
  2021年   19篇
  2020年   2篇
  2019年   18篇
  2018年   13篇
  2017年   11篇
  2016年   18篇
  2015年   11篇
  2014年   12篇
  2013年   24篇
  2012年   7篇
  2011年   11篇
  2010年   6篇
  2009年   14篇
  2008年   20篇
  2007年   5篇
  2006年   7篇
  2005年   5篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1987年   1篇
  1983年   1篇
  1962年   1篇
  1961年   1篇
  1955年   2篇
排序方式: 共有253条查询结果,搜索用时 0 毫秒
1.
Waste accumulation is a grave concern and becoming a transboundary challenge for environment. During Covid-19 pandemic, diverse type of waste were collected due to different practices employed in order to fight back the transmission rate of the virus. Covid-19 was proved to be capricious catastrophe of this 20th century and even not completely eradicated from the world. The havoc created by this imperceptible quick witted, pleomorphic deadly virus can't be ignored. Though a number of vaccines have been developed by the scientists but there is a fear of getting this virus again in our life. Medical studies prove that immunity drinks will help to reduce its reoccurrences. Coconut water is widely used among all drinks available globally. Its massive consumption created an incalculable pile of green coconut shells around the different corners of the world. This practice generating enormous problem of space acquisition for the environment. Both the environment and public health will benefit from an evaluation of quantity of coconut waste that is being thrown and its potential to generate value added products. With this context, present article has been planned to study different aspects like, coconut waste generation, its biological properties and environmental hazards associated with its accumulation. Additionally, this review illustrates, green technologies for production of different value added products from coconut waste.  相似文献   
2.
The purpose of the research is to identify the critical challenges that are impeding the adoption of e-mobility in India. It also aims to give a roadmap how to address these challenges while taking into considerations concerns of all the relevant stakeholders. Based on an in-depth literature review, an exploratory research design is employed to delve deep into various aspects of e-mobility. This is followed by a three-phase Delphi technique to identify and rate the e-mobility challenges in the Indian context. The study successfully identifies four different categories of challenges and proposes integrative framework for e-mobility. Further, the research goes on to lay out the future roadmap for mass adoption of electric vehicles (EVs) in India. The research is novel in terms of presenting a holistic viewpoint on e-mobility in India. Its originality lies in identifying the major inhibitors obstructing EVs adoption in India and then suggesting the roadmap how to overcome these impediments for mass adoption of e-mobility.  相似文献   
3.
The 26 December 2004-Tsunami has deposited sediments in the Pichavaram mangrove ecosystem, east coast of India. Ten surface and three core sediment samples were collected within thirty days of the event. High concentrations of Cd, Cu, Cr, Pb, and Ni were observed in the tsunamigenic sediments. With respect to Fe, Zn, and Mn, there was little variation as compared to pre-tsunami values. The geo-accumulation index was calculated in order to assess the contamination of heavy metals in the sediments. The sediments were extremely contaminated with respect to Cd and they showed moderate to strong contamination with respect to Cr, Pb and Ni. The study highlighted the future risk of enhanced metal pollution in near future in this mangrove ecosystem.  相似文献   
4.
Environmental Chemistry Letters - Nanoencapsulation is a promising technology allowing miniaturized dosage and administration of valuable volatiles, degradable bioactives and biologicals. The...  相似文献   
5.
Environmental Science and Pollution Research - Compressed natural gas is an alternative green fuel for automobile industry. Recently, the Indian government is targeting to replace all the...  相似文献   
6.
Hexavalent chromium-tolerant (1500?mg/L) bacterium MW1 was isolated from harbour water of Paradip Port and evaluated for Cr(VI) reduction potential. The isolate was identified as Exiguobacterium indicum by biochemical and 16S rRNA gene sequence methods. Salt tolerance of the bacterium was evaluated in a wide range of NaCl concentrations (0.5–13%, w/v). The Cr(VI) reduction of the strain was evaluated and optimised with varied Cr(VI) concentrations (100–1000?mg/L), pH (5.0–9.0), temperature (30–40°C) and shaking velocity (100–150?rpm) in two different minimal media (M9 and Acetate). Under optimised conditions, after 192?h of incubation nearly 92%, 50% and 46% reduction in the M9 minimal medium and 91%, 47% and 40% reduction in the acetate minimal medium were observed for 100, 500 and 1000?mg/L of Cr(VI), respectively. The exponential rate equation for Cr(VI) reduction yielded higher rate constant value, that is, 1.27?×?10?2?h?1 (M9) and 1.17?×?10?2?h?1 (Acetate) in case of 100?mg/L and became lower for 500 and 1000?mg/L Cr(VI) concentrations. Further, the association of bacterial cells with reduced product was ascertained by Fourier transform infrared spectrometer, UV–Vis–DRS and field-emission scanning electron microscope–energy-dispersive X-ray analyses. The above study suggests that the higher reducing ability of the marine bacterium E. indicum MW1 will be suitable for Cr(VI) reduction from saline effluents.  相似文献   
7.

To eradicate the aquatic pollution caused by dyes, trendily the global researchers provide dedication to dye degradation using nanostructured photocatalyst. This research work is dedicated to explore an advanced, facile, bio-compact green fabricated nanostructure for water refinement. In this regard, plant-mediated syntheses of pure CeO2 and Mn-decorated CeO2 nano-powders have been inspected using seed extract of Cassia angustifolia. Investigations through UV-diffuse reflectance spectroscopy explored the significantly tuned band gap of Mn:CeO2. FT-IR spectroscopy shows the existing functional groups of high-potential phenolic compounds, proteins, and amino acids in Cassia angustifolia act as reducing and capping agents involved in the green fabricated nanostructured samples. X-ray diffraction pattern has been exposed to crystalline cubic fluorite morphology in a single phase and it leads to a regulated optimized amount of Mn on CeO2 nanostructure. The FESEM analysis predicts the morphology of CeO2 in spherical and Mn:CeO2 in flower-like structure. The HRTEM analysis has portrayed particle size of CeO2 is 11 nm and tuned Mn:CeO2 nanostructure is 9 nm. The HRTEM images revealed the average particle size in the range 10–12 nm in CeO2 and 8–9 nm in 5 mol% Mn:CeO2 nanoparticles. It showed a decrease in average particle size with an increase in Mn concentration and the reduction in size may be due to the replacement of Ce(IV) with Mn(II) ions. The elemental composition in nanostructure was predicted using energy-dispersive X-ray analysis. The rapid photocatalytic degradation efficiency of malachite green was effectually performed and compared with the kinetics model of Mn:CeO2 and pure CeO2 nanostructures. From the augmented results, tuned Mn:CeO2 was found to act as the finest green fabricated photocatalyst in the amputation of lethal and carcinogenic dye.

  相似文献   
8.
Environmental Science and Pollution Research - Pollution in the environment due to accumulation of potentially toxic metals results in deterioration of soil and water quality, thus impacting health...  相似文献   
9.
Environmental Science and Pollution Research - Type 2 diabetes (T2D) is one of the most widely spread metabolic disorder also called as “life style” disease. Due to the alarming number...  相似文献   
10.
The rice fields, depleted of O2, contain large amount of moisture and organic substrates to provide an ideal anaerobic environment for methanogenesis and are one of the principal anthropogenic sources of methane. In order to mitigate this emission Alternative Electron Acceptors (AEA) were altered in the soil. The experiments were carried out in four seasons at the site of Balarampur, near Baruipur, South 24 Parganas, West Bengal, namely September–December, 2005 (Cultivar: Sundari), February–May, 2006 (Cultivar: Sundari), September–December, 2006 and February–May, 2007 (Cultivar: Swarna-Pankaj). The seasonal average methane flux (Fe treated), for the cultivar type “Sundari” (season: September–December, 2005), is 4.41 t ha−1, as compared to the value of 6.40 t ha−1 for the untreated soil. Similarly for February–May, 2006, the seasonal average methane flux (Fe treated) is 5.52 t ha−1, whereas the untreated flux is 5.69 t ha−1. In the third and fourth seasons we had two treatments with Ammonium Thiosulphate and Ferric Hydroxide. The seasonal average methane flux (treatment: Ammonium Thiosulphate) is 4.35 t ha−1 and 5.41 t ha−1 respectively, whereas for the ferric hydroxide treated soil it is 4.35 t ha−1 and 6.14 t ha−1 respectively. The properties related to the nutrient quality of the harvested paddy seeds supplement these results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号